Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(8): 4148-4156, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38348698

RESUMO

The escalating interest in low-dimensional perovskites stems from their tunable optoelectronic traits and robust stability. The pursuit of multifaceted optoelectronic devices holds substantial importance for energy-efficient and space-constrained systems. This investigation showcases the realization of multifunctional two-dimensional perovskite solar cells, incorporating transient light detection and resistive switching functions within a single device, achievable by facile external bias adjustments. Serving as a photodetector, the device exhibits commendable self-powered photodetection attributes, including an exceptionally low dark current density of 1 nA mm-2, a remarkable specific detectivity of 7.67 × 1012 Jones, a swift response time of 0.60 µs, and an expansive linear dynamic range of 72 dB. As a memristor, it showcases enduring performance across 4 × 102 cycles, a substantial on/off ratio of 106, and a rapid operation time of less than 1 µs. This endeavor unveils a pioneering avenue for advancing high-performance, air-stable multifunctional two-dimensional perovskite electronics.

2.
Plant Cell ; 36(2): 346-366, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37877462

RESUMO

The nuclear pore complex (NPC) has multiple functions beyond the nucleo-cytoplasmic transport of large molecules. Subnuclear compartmentalization of chromatin is critical for gene expression in animals and yeast. However, the mechanism by which the NPC regulates gene expression is poorly understood in plants. Here we report that the Y-complex (Nup107-160 complex, a subcomplex of the NPC) self-maintains its nucleoporin homeostasis and modulates FLOWERING LOCUS C (FLC) transcription via changing histone modifications at this locus. We show that Y-complex nucleoporins are intimately associated with FLC chromatin through their interactions with histone H2A at the nuclear membrane. Fluorescence in situ hybridization assays revealed that Nup96, a Y-complex nucleoporin, enhances FLC positioning at the nuclear periphery. Nup96 interacted with HISTONE DEACETYLASE 6 (HDA6), a key repressor of FLC expression via histone modification, at the nuclear membrane to attenuate HDA6-catalyzed deposition at the FLC locus and change histone modifications. Moreover, we demonstrate that Y-complex nucleoporins interact with RNA polymerase II to increase its occupancy at the FLC locus, facilitating transcription. Collectively, our findings identify an attractive mechanism for the Y-complex in regulating FLC expression via tethering the locus at the nuclear periphery and altering its histone modification.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hibridização in Situ Fluorescente , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Cromatina/genética , Cromatina/metabolismo , Flores/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo
3.
Plant Sci ; 338: 111920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944705

RESUMO

Plants are frequently subjected to a range of environmental stresses, including drought, salinity, cold, pathogens, and herbivore attacks. To survive in such conditions, plants have evolved a novel adaptive mechanism known as 'stress memory'. The formation of stress memories necessitates coordinated responses at the cellular, genetic/genomic, and epigenetic levels, involving altered physiological responses, gene activation, hyper-induction and chromatin modification. Cotton (Gossypium spp.) is an important economic crop with numerous applications and high economic value. In this study, we establish G. hirsutum drought memory following cycles of mild drought and re-watering treatments and analyzed memory gene expression patterns. Our findings reveal the physiological, biochemical, and molecular mechanisms underlying drought stress memory formation in G. hirsutum. Specifically, H3K4me3, a histone modification, plays a crucial role in regulating [+ /+ ] transcriptional memory. Moreover, we investigated the intergenerational inheritance of drought stress memory in G. hirsutum. Collectively, our data provides theoretical guidance for cotton breeding.


Assuntos
Gossypium , Plântula , Gossypium/metabolismo , Plântula/genética , Plântula/metabolismo , Secas , Melhoramento Vegetal , Genômica , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
4.
Int J Nanomedicine ; 18: 6469-6486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026537

RESUMO

Background: The respiratory system is intensely damaged by acute lung injury (ALI). The anti-inflammatory effects of tetramethylpyrazine (TMP) against ALI have been confirmed, but it exhibits a short half-life. miR-194-5p could directly target Rac1, but the internalization rate of miRNA cells was low. Purpose: To explore the potential of the soft mesoporous organic silica nanoplatform (NPs) as carriers for delivery of TMP and miR-194-5p through the tail vein. Methods: NPs@TMP and NPs@PEI@miR-194-5p were added to the HUVEC cell-lines, in vitro, to observe the cell uptake and cytotoxic effects. In vivo experiments were conducted by injecting fluorescently labeled NPs through the tail vein and tracking distribution. Therapeutic and toxic side-effects were analyzed systemically. Results: In vitro study exhibited that NPs have no toxic effect on HUVECs within the experimental parameters and have excellent cellular uptake. The IVIS Spectrum Imaging System shows that NPs accumulate mainly in the lungs. NPs@TMP treatment can improved oxidative stress and inflammation levels in ALI mice and inhibited the TLR4/NLRP3/caspase 1 pathway. NPs@PEI@miR-194-5p can inhibit the Rac1/ZO-1/occludin pathway and improved endothelial cell permeability in ALI mice. The co-treatment of NPs@TMP and NPs@PEI@miR-194-5p can significantly improved the survival rates of the mice, reduced pulmonary capillary permeability and improved pathological injury in ALI mice. Innovation: This study combined traditional Chinese medicine, bioinformatics, cellular molecular biology and nanobiomedicine to study the pathogenesis and treatment of ALI. The rate of cellular internalization was improved by changing the shape and hardness of nanoparticles. NPs@TMP and NPs@PEI@miR-194-5p combined application can significantly improve the survival condition and pathological injury of mice. Conclusion: NPs loaded with TMP and miR-194-5p showed a greater therapeutic effect in ALI mice.


Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Compostos de Organossilício , Pirazinas , Animais , Humanos , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipopolissacarídeos , Pulmão/patologia , MicroRNAs/farmacologia , Compostos de Organossilício/farmacologia , Pirazinas/farmacologia
5.
RSC Adv ; 13(21): 14443-14460, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180014

RESUMO

Cancer has emerged as a pressing global public health issue, and improving the effectiveness of cancer treatment remains one of the foremost challenges of modern medicine. The primary clinical methods of treating cancer, including surgery, chemotherapy and radiotherapy, inevitably result in some adverse effects on the body. However, the advent of photothermal therapy offers an alternative route for cancer treatment. Photothermal therapy relies on photothermal agents with photothermal conversion capability to eliminate tumors at high temperatures, which offers advantages of high precision and low toxicity. As nanomaterials increasingly play a pivotal role in tumor prevention and treatment, nanomaterial-based photothermal therapy has gained significant attention owing to its superior photothermal properties and tumor-killing abilities. In this review, we briefly summarize and introduce the applications of common organic photothermal conversion materials (e.g., cyanine-based nanomaterials, porphyrin-based nanomaterials, polymer-based nanomaterials, etc.) and inorganic photothermal conversion materials (e.g., noble metal nanomaterials, carbon-based nanomaterials, etc.) in tumor photothermal therapy in recent years. Finally, the problems of photothermal nanomaterials in antitumour therapy applications are discussed. It is believed that nanomaterial-based photothermal therapy will have good application prospects in tumor treatment in the future.

6.
Plant Cell Physiol ; 63(12): 1890-1899, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35475535

RESUMO

Sinapate esters, which are induced in plants under ultraviolet-B (UV-B) irradiation, have important roles not only in the protection against UV-B irradiation but also in the regulation of stomatal closure. Here, we speculated that sinapate esters would function in the stomatal closure of Arabidopsis thaliana in response to UV-B. We measured the stomatal aperture size of the wild-type (WT) and bright trichomes 1 (brt1) and sinapoylglucose accumulator 1 (sng1) mutants under UV-B irradiation; the latter two mutants are deficient in the conversion of sinapic acid to sinapoylglucose (SG) and SG to sinapoylmalate (SM), respectively. Both the brt1 and sng1 plants showed smaller stomatal apertures than the WT under normal light and UV-B irradiation conditions. The accumulation of SM and malate were induced by UV-B irradiation in WT and brt1 plants but not in sng1 plants. Consistently, exogenous malate application reduced UV-B-induced stomatal closure in WT, brt1 and sng1 plants. Nonetheless, levels of reactive oxygen species (ROS), nitric oxide (NO) and cytosolic Ca2+ were higher in guard cells of the sng1 mutant than in those of the WT under normal white light and UV-B irradiation, suggesting that disturbance of sinapate metabolism induced the accumulation of these signaling molecules that promote stomatal closure. Unexpectedly, exogenous sinapic acid application prevented stomatal closure of WT, brt1 and sng1 plants. In summary, we hypothesize that SG or other sinapate esters may promote the UV-B-induced malate accumulation and stomatal closure, whereas sinapic acid inhibits the ROS-NO pathway that regulates UV-B-induced cytosolic Ca2+ accumulation and stomatal closure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Ésteres/metabolismo , Malatos/metabolismo , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Ácido Abscísico/metabolismo
7.
Plant Cell Physiol ; 63(12): 1900-1913, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681253

RESUMO

Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistência à Seca , Germinação/genética , Ácido Abscísico/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
8.
Chem Biol Drug Des ; 101(2): 364-379, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054251

RESUMO

Herein, a novel class of tetrahydroisoquinoline stilbene derivatives were synthesized, and their potential in vitro anticancer activities were evaluated. Most of the compounds displayed inhibitory activity against one or more representative human cancer cell lines (lung cancer A549 cells, breast cancer MCF-7 cells, and human colorectal carcinoma HT-29 cells), especially compound 16e, which exhibited outstanding cytotoxicity to A549 cells. The tubulin polymerization assay demonstrated that compound 16e displayed better inhibition than colchicine when tested at the same concentration. It was found that 16e arrested A549 cells in G2/M phase by downregulating the expression of cell division cycle 2 (Cdc2) and upregulating the expression of proliferating cell nuclear antigen (PCNA) and cyclin B1. Flow cytometry and Western blot analysis indicated that 16e caused apoptosis via the mitochondrial-dependent apoptotic pathway by reducing mitochondrial membrane potential, inducing ROS accumulation, promoting the release of cytochrome C from the mitochondria into the cytoplasm, and further increasing the protein level of cleaved caspase-3. This work may inspire new ideas for the further improvement of tubulin-related anticancer drugs and treatments.


Assuntos
Antineoplásicos , Estilbenos , Tetra-Hidroisoquinolinas , Humanos , Linhagem Celular Tumoral , Tubulina (Proteína)/metabolismo , Estilbenos/farmacologia , Antineoplásicos/farmacologia , Moduladores de Tubulina/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Relação Estrutura-Atividade
9.
J Colloid Interface Sci ; 633: 102-112, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36436344

RESUMO

Magnetic resonance (MR) imaging techniques, which can provide images with excellent anatomical detail, are widely used in clinical diagnosis. However, the current clinical small molecule gadolinium (Gd) contrast agents have the defects of relatively low sensitivity and poor tumor-target specificity, preventing their adoption in biology and medicine. Herein, a facile synthetic strategy to fabricate gadolinium-hybridized mesoporous organosilica nanoparticles (MOSG) through a nanoprecipitation reaction, with the surface of nanoparticles grafted with the fluorescent dye isothiocyanate (FITC) and arginine-glycine-aspartic acid (RGD) for delivery of the antitumour drug doxorubicin hydrochloride (DOX), resulting in a high-performance nanotheranostic (RGD-MOSG-FITC/DOX) for targeted magnetic resonance imaging and chemotherapy of tumors. The prepared MOSG had a particle size of 60-80 nm and gadolinium elements were distributed in clusters that exhibited boosted longitudinal relaxivity. Routine blood tests and histopathology indicated good biocompatibility of MOSG. Furthermore, after being decorated with Arg-Gly-Asp peptide (RGD), RGD-MOSG-FITC demonstrated more preferable cellular uptake by HeLa cells (high expression of αⅤß3) than MOSG without RGD grafting. Additionally, the tumor growth inhibition effect of RGD-MOSG-FITC/DOX was substantially more effective than that of the other groups. Therefore, this new delivery platform has good application potential in the field of tumor diagnosis and treatment.


Assuntos
Gadolínio , Nanopartículas , Humanos , Células HeLa , Gadolínio/química , Fluoresceína-5-Isotiocianato , Nanopartículas/química , Sistemas de Liberação de Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/química , Imageamento por Ressonância Magnética/métodos , Oligopeptídeos/química , Linhagem Celular Tumoral
10.
Sci Bull (Beijing) ; 67(3): 315-327, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546080

RESUMO

Restricted genetic diversity can supply only a limited number of elite genes for modern plant cultivation and transgenesis. In this study, we demonstrate that rational design enables the engineering of geranylgeranyl diphosphate synthase (NtGGPPS), an enzyme of the methylerythritol phosphate pathway (MEP) in the model plant Nicotiana tabacum. As the crucial bottleneck in carotenoid biosynthesis, NtGGPPS1 interacts with phytoene synthase (NtPSY1) to channel GGPP into the production of carotenoids. Loss of this enzyme in the ntggpps1 mutant leads to decreased carotenoid accumulation. With the aim of enhancing NtGGPPS1 activity, we undertook structure-guided rational redesign of its substrate binding pocket in combination with sequence alignment. The activity of the designed NtGGPPS1 (a pentuple mutant of five sites V154A/I161L/F218Y/I209S/V233E, d-NtGGPPS1) was measured by a high-throughput colorimetric assay. d-NtGGPPS1 exhibited significantly higher conversion of IPP and each co-substrate (DMAPP ~1995.5-fold, GPP ~25.9-fold, and FPP ~16.7-fold) for GGPP synthesis compared with wild-type NtGGPPS1. Importantly, the transient and stable expression of d-NtGGPPS1 in the ntggpps1 mutant increased carotenoid levels in leaves, improved photosynthetic efficiency, and increased biomass relative to NtGGPPS1. These findings provide a firm basis for the engineering of GGPPS and will facilitate the development of quality and yield traits. Our results open the door for the structure-guided rational design of elite genes in higher plants.


Assuntos
Carotenoides , Farnesiltranstransferase/genética , Carotenoides/metabolismo , Fotossíntese , Alinhamento de Sequência
11.
Front Plant Sci ; 13: 986414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388571

RESUMO

Roots are important plant organs for the uptake of water and nutrient elements. Plant root development is finely regulated by endogenous signals and environmental cues, which shapes the root system architecture to optimize the plant growth and adapt to the rhizospheric environments. Carotenoids are precursors of plant hormones strigolactones (SLs) and ABA, as well as multiple bioactive molecules. Numerous studies have demonstrated SLs and ABA as essential regulators of plant root growth and development. In addition, a lot carotenoid-derived bioactive metabolites are recently identified as plant root growth regulators, such as anchorene, ß-cyclocitral, retinal and zaxinone. However, our knowledge on how these metabolites affect the root architecture to cope with various stressors and how they interact with each other during these processes is still quite limited. In the present review, we will briefly introduce the biosynthesis of carotenoid-derived root regulators and elaborate their biological functions on root development and architecture, focusing on their contribution to the rhizospheric environmental adaption of plants.

12.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293115

RESUMO

The stable genetic transformation of soybean is time-consuming and inefficient. As a simple and practical alternative method, hairy root transformation mediated by Agrobacterium rhizogenes is widely applied in studying root-specific processes, nodulation, biochemical and molecular functions of genes of interest, gene editing efficiency of CRISPR/Cas9, and biological reactors and producers. Therefore, many laboratories have developed unique protocols to obtain hairy roots in composite plants composed of transgenic roots and wild-type shoots. However, these protocols still suffer from the shortcomings of low efficiency and time, space, and cost consumption. To address this issue, we developed a new protocol efficient regeneration and transformation of hairy roots (eR&T) in soybean, by integrating and optimizing the main current methods to achieve high efficiency in both hairy root regeneration and transformation within a shorter period and using less space. By this eR&T method, we obtained 100% regeneration of hairy roots for all explants, with an average 63.7% of transformation frequency, which promoted the simultaneous and comparative analysis of the function of several genes. The eR&T was experimentally verified Promoter:GUS reporters, protein subcellular localization, and CRISPR/Cas9 gene editing experiments. Employing this approach, we identified several novel potential regulators of nodulation, and nucleoporins of the Nup107-160 sub-complex, which showed development-dependent and tissue-dependent expression patterns, indicating their important roles in nodulation in soybean. Thus, the new eR&T method is an efficient and economical approach for investigating not only root and nodule biology, but also gene function.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , /genética , Transformação Genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Plantas Geneticamente Modificadas/genética , Raízes de Plantas/genética , Agrobacterium/genética , Biologia
13.
Chem Sci ; 13(31): 8906-8923, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091200

RESUMO

Near-infrared (NIR) light-emitting materials show excellent potential applications in the fields of military technology, bioimaging, optical communication, organic light-emitting diodes (OLEDs), etc. Recently, thermally activated delayed fluorescence (TADF) emitters have made historic developments in the field of OLEDs. These metal-free materials are more attractive because of efficient reverse intersystem crossing processes which result in promising high efficiencies in OLEDs. However, the development of NIR TADF emitters has progressed at a relatively slower pace which could be ascribed to the difficult promotion of external quantum efficiencies. Thus, increasing attention has been paid to NIR TADF emitters. In this review, the recent progress of NIR TADF emitters has been summarized along with their molecular design strategies and photophysical properties, as well as electroluminescence performance data of their OLEDs, respectively.

14.
Plant Physiol ; 190(4): 2671-2687, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35822606

RESUMO

The karrikin (KAR) receptor and several related signaling components have been identified by forward genetic screening, but only a few studies have reported on upstream and downstream KAR signaling components and their roles in drought tolerance. Here, we characterized the functions of KAR UPREGULATED F-BOX 1 (KUF1) in drought tolerance using a reverse genetics approach in Arabidopsis (Arabidopsis thaliana). We observed that kuf1 mutant plants were more tolerant to drought stress than wild-type (WT) plants. To clarify the mechanisms by which KUF1 negatively regulates drought tolerance, we performed physiological, transcriptome, and morphological analyses. We found that kuf1 plants limited leaf water loss by reducing stomatal aperture and cuticular permeability. In addition, kuf1 plants showed increased sensitivity of stomatal closure, seed germination, primary root growth, and leaf senescence to abscisic acid (ABA). Genome-wide transcriptome comparisons of kuf1 and WT rosette leaves before and after dehydration showed that the differences in various drought tolerance-related traits were accompanied by differences in the expression of genes associated with stomatal closure (e.g. OPEN STOMATA 1), lipid and fatty acid metabolism (e.g. WAX ESTER SYNTHASE), and ABA responsiveness (e.g. ABA-RESPONSIVE ELEMENT 3). The kuf1 mutant plants had higher root/shoot ratios and root hair densities than WT plants, suggesting that they could absorb more water than WT plants. Together, these results demonstrate that KUF1 negatively regulates drought tolerance by modulating various physiological traits, morphological adjustments, and ABA responses and that the genetic manipulation of KUF1 in crops is a potential means of enhancing their drought tolerance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Secas , Proteínas de Arabidopsis/metabolismo , Estômatos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Água/metabolismo , Plantas Geneticamente Modificadas/metabolismo
15.
Front Plant Sci ; 13: 864215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548290

RESUMO

Leaf senescence is an evolutionarily acquired process and it is critical for plant fitness. During senescence, macromolecules and nutrients are disassembled and relocated to actively growing organs. Plant leaf senescence process can be triggered by developmental cues and environmental factors, proper regulation of this process is essential to improve crop yield. Protein kinases are enzymes that modify their substrates activities by changing the conformation, stability, and localization of those proteins, to play a crucial role in the leaf senescence process. Impressive progress has been made in understanding the role of different protein kinases in leaf senescence recently. This review focuses on the recent progresses in plant leaf senescence-related kinases. We summarize the current understanding of the function of kinases on senescence signal perception and transduction, to help us better understand how the orderly senescence degeneration process is regulated by kinases, and how the kinase functions in the intricate integration of environmental signals and leaf age information.

16.
Front Plant Sci ; 13: 840397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574065

RESUMO

Verticillium wilt, caused by the soil-borne fungus Verticillium dahliae, is one of the most devastating diseases in cotton (Gossypium spp.). Lignin in the cell wall forms a physical barrier to inhibit pathogen invasion, and defense-induced lignification reinforces secondary cell wall to prevent pathogens from further spreading. Cinnamyl alcohol dehydrogenases (CADs) catalyze the production of three main monolignols, p-coumaryl- (H), coniferyl- (G), and sinapyl-alcohols (S), which are the fundamental blocks of lignin. Here, we identified CAD genes in G. hirsutum, analyzed their expression profiles in cotton leaf, stem, and root from different developmental stages, and selected GhCAD35, GhCAD45, and GhCAD43, which were consistently induced by V. dahliae inoculation in G. hirsutum cultivars resistant or susceptible to V. dahliae. On the basis of confirmation of the in vitro enzymatic activity of the three proteins in generation of the three monolignols, we used virus-induced gene silencing (VIGS) to investigate the effects of silencing of GhCAD35, GhCAD45, or GhCAD43 on resistance to V. dahliae as well as on deposition and the composition of lignin. Silencing each of the three CADs impaired the defense-induced lignification and salicylic acid biosynthesis in stem, and compromised resistance to V. dahliae. Moreover, our study showed that silencing the three GhCADs severely affected the biosynthesis of S-lignin, leading to a decrease of the syringyl/guaiacyl (S/G) ratio. Heterogeneous overexpression of GhCAD35, GhCAD45, or GhCAD43 in Arabidopsis enhanced disease resistance. Taken together, our study demonstrates a role of the three GhCADs in defense-induced lignin biosynthesis and resistance to V. dahliae in G. hirsutum.

17.
Plant Cell ; 34(4): 1273-1288, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35021223

RESUMO

Primary root growth in cereal crops is fundamental for early establishment of the seedling and grain yield. In young rice (Oryza sativa) seedlings, the primary root grows rapidly for 7-10 days after germination and then stops; however, the underlying mechanism determining primary root growth is unclear. Here, we report that the interplay of ethylene and gibberellin (GA) controls the orchestrated development of the primary root in young rice seedlings. Our analyses advance the knowledge that primary root growth is maintained by higher ethylene production, which lowers bioactive GA contents. Further investigations unraveled that ethylene signaling transcription factor ETHYLENE INSENSITIVE3-LIKE 1 (OsEIL1) activates the expression of the GA metabolism genes GIBBERELLIN 2-OXIDASE 1 (OsGA2ox1), OsGA2ox2, OsGA2ox3, and OsGA2ox5, thereby deactivating GA activity, inhibiting cell proliferation in the root meristem, and ultimately gradually inhibiting primary root growth. Mutation in OsGA2ox3 weakened ethylene-induced GA inactivation and reduced the ethylene sensitivity of the root. Genetic analysis revealed that OsGA2ox3 functions downstream of OsEIL1. Taken together, we identify a molecular pathway impacted by ethylene during primary root elongation in rice and provide insight into the coordination of ethylene and GA signals during root development and seedling establishment.


Assuntos
Giberelinas , Oryza , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/metabolismo , Giberelinas/farmacologia , Oryza/metabolismo , Plântula/metabolismo
18.
BMC Plant Biol ; 21(1): 448, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615467

RESUMO

BACKGROUND: Cotton is an important cash crop. The fiber length has always been a hot spot, but multi-factor control of fiber quality makes it complex to understand its genetic basis. Previous reports suggested that OsGASR9 promotes germination, width, and thickness by GAs in rice, while the overexpression of AtGASA10 leads to reduced silique length, which is likely to reduce cell wall expansion. Therefore, this study aimed to explore the function of GhGASA10 in cotton fibers development. RESULTS: To explore the molecular mechanisms underlying fiber elongation regulation concerning GhGASA10-1, we revealed an evolutionary basis, gene structure, and expression. Our results emphasized the conservative nature of GASA family with its origin in lower fern plants S. moellendorffii. GhGASA10-1 was localized in the cell membrane, which may synthesize and transport secreted proteins to the cell wall. Besides, GhGASA10-1 promoted seedling germination and root extension in transgenic Arabidopsis, indicating that GhGASA10-1 promotes cell elongation. Interestingly, GhGASA10-1 was upregulated by IAA at fiber elongation stages. CONCLUSION: We propose that GhGASA10-1 may promote fiber elongation by regulating the synthesis of cellulose induced by IAA, to lay the foundation for future research on the regulation networks of GASA10-1 in cotton fiber development.


Assuntos
Proliferação de Células/genética , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Morfogênese/efeitos dos fármacos , Morfogênese/genética , Reguladores de Crescimento de Plantas/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibra de Algodão , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo
19.
Front Plant Sci ; 12: 710754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484271

RESUMO

Crop yield has been maintaining its attraction for researchers because of the demand of global population growth. Mutation of flowering activators, such as florigen, increases plant biomass at the expense of later flowering, which prevents crop maturity in the field. As a result, it is difficult to apply flowering activators in agriculture production. Here, we developed a strategy to utilize florigen to significantly improve soybean yield in the field. Through the screening of transgenic lines of RNAi-silenced florigen homologs in soybean (Glycine-max-Flowering Locus T Like, GmFTL), we identified a line, GmFTL-RNAi#1, with minor changes in both GmFTL expression and flowering time but with notable increase in soybean yield. As expected, GmFTL-RNAi#1 matured normally in the field and exhibited markedly high yield over multiple locations and years, indicating that it is possible to reach a trade-off between flowering time and high yield through the fine-tuning expression of flowering activators. Further studies uncovered an unknown mechanism by which GmFTL negatively regulates photosynthesis, a substantial source of crop yield, demonstrating a novel function of florigen. Thus, because of the highly conserved functions of florigen in plants and the classical RNAi approach, the findings provide a promising strategy to harness early flowering genes to improve crop yield.

20.
3 Biotech ; 11(5): 249, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33968592

RESUMO

Carotenoid cleavage dioxygenases (CCDs) are a group of enzymes that catalyze the selective oxidative cleavage steps from carotenoids to apocarotenoids, which are essential for the synthesis of biologically important molecules such as retinoids, and the phytohormones abscisic acid (ABA) and strigolactones. In addition, CCDs play important roles in plant biotic and abiotic stress responses. Till now, a comprehensive characterization of the CCD gene family in the economically important crop cotton (Gossypium spp.) is still missing. Here, we performed a genome-wide analysis and identified 33, 31, 16 and 15 CCD genes from two allotetraploid Gossypium species, G. hirsutum and G. barbadense, and two diploid Gossypium species, G. arboreum and G. raimondii, respectively. According to the phylogenetic tree analysis, cotton CCDs are classified as six subgroups including CCD1, CCD4, CCD7, CCD8, nine-cis-epoxycarotenoid dioxygenase (NCED) and zaxinone synthase (ZAS) sub-families. Evolutionary analysis shows that purifying selection dominated the evolution of these genes in G. hirsutum and G. barbadense. Predicted cis-acting elements in 2 kb promoters of CCDs in G. hirsutum are mainly involved in light, stress and hormone responses. The transcriptomic analysis of GhCCDs showed that different GhCCDs displayed diverse expression patterns and were ubiquitously expressed in most tissues; moreover, GhCCDs displayed specific inductions by different abiotic stresses. Quantitative reverse-transcriptional PCR (qRT-PCR) confirmed the induction of GhCCDs by heat stress, salinity, polyethylene glycol (PEG) and ABA application. In summary, the bioinformatics and expression analysis of CCD gene family provide evidence for the involvement in regulating abiotic stresses and useful information for in-depth studies of their biological functions in G. hirsutum. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-02805-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...